Chapter one

Functions

Sets of Numbers:

$\mathbb{N}=\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots\} \quad$ Natural Numbers.
$\mathbb{Z}=\{\ldots,-\mathbf{3},-\mathbf{2},-\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots\} \quad$ Integer Numbers.
$\mathbb{Q}=\left\{\frac{\boldsymbol{a}}{\boldsymbol{b}}: \boldsymbol{a}, \boldsymbol{b} \in \mathbb{Z}, \boldsymbol{b} \neq \mathbf{0}\right\} \quad$ Rational Numbers.
$\mathbb{Q} \mathbb{Q}=\pi, e, \sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots$ Irrational Numbers.
$\mathbb{R}=\mathbb{Q} \cup \mathbb{Q} \quad$ Real Numbers
Definition: If \boldsymbol{a} and \boldsymbol{b} are real numbers, we define the Intervals as follows:
(1) Open Intervals $\quad(a, b)=\{x \in R: a<x<b\}$
(2) Closed Intervals

$$
[a, b]=\{x \in R: a \leq x \leq b\}
$$

(3) Half open, half closed Intervals $[\boldsymbol{a}, \boldsymbol{b})=\{\boldsymbol{x} \in \boldsymbol{R}: \boldsymbol{a} \leq \boldsymbol{x}<\boldsymbol{b}\}$ and $(a, b]=\{x \in R: a<x \leq b\}$.
(4) $[a, \infty)=\{x \in R: x \geq a\},(-\infty, a]=\{x \in R: x \leq a\},(-\infty, a)=\{x \in R: x<a\}$ and $(-\infty, \infty)=\{\boldsymbol{x} \in \boldsymbol{R}: \boldsymbol{x}$ is a real number $\}=\boldsymbol{R}$.

Remark: If A and B are intervals, then

1. The union of A and B is denoted by $A \cup B$ and defined as the interval whose members belong to A or B (or both).
2. The intersection of A and B is denoted by $A \cap B$ and defined as the interval whose members belong to both A and B.
Example: Let $A=[0,5]$ and $B=[1,7]$ then $A \cup B=[0,7]$ and $A \cap B=[1,5]$.

Functions

Definition: A relation $f: X \rightarrow Y$ is called a function if and only if for each element $x \in X$ there exist a unique element $y \in Y$ such that $y=f(x)$.

Note:

(1) x is the independent variable (input value of f) and y is dependent variable (output value of f at x)
(2) The set X of all possible input values is called the domain of f and it's denoted by D_{f}
(3) The set Y is called the co-domain of the function.
(4) The set of all possible output values $f(x)$ as x varies throughout D_{x} is called the range of f and it's denoted by R_{f}. (Note that $R_{f} \subseteq Y$.)

Examples: Find the Domain and the Range of the following:
(1) $y=x+5$

$$
D_{f}=\{x \in R:-\infty<x<\infty\}=R
$$

To find the Range, we represent \boldsymbol{x} in terms of $\boldsymbol{y} . \quad \boldsymbol{x}=\boldsymbol{y}$ - $\mathbf{5}$

$$
R_{f}=\{y \in R:-\infty<y<\infty\}=R
$$

(2)

$$
\begin{aligned}
& \boldsymbol{y}=\boldsymbol{x}^{2} \quad D_{f}=\{x \in R:-\infty<x<\infty\}=R \\
& \boldsymbol{x}=\sqrt{\boldsymbol{y}} \quad \Rightarrow R_{f}=\{y \in R: y \geq 0\}=[0, \infty)
\end{aligned}
$$

$$
\begin{array}{cc}
\begin{array}{c}
\boldsymbol{y}=\frac{\boldsymbol{1}}{\boldsymbol{x}+\boldsymbol{2}} \\
\boldsymbol{x}+\boldsymbol{2}=\boldsymbol{0}, \boldsymbol{x}=-\mathbf{2}
\end{array} & \text { (set the denominator }=\boldsymbol{0} \text {) } \tag{3}\\
\boldsymbol{x}=\frac{\boldsymbol{1 - 2 \boldsymbol { y }}}{\boldsymbol{y}} & \Rightarrow D_{f}=\{x \in \mathfrak{R}: x \neq-2\}=\mathfrak{R} /\{-2\} \\
& \Rightarrow R_{f}=\{y \in \mathfrak{R}: y \neq 0\}=\mathfrak{R} /\{0\}
\end{array}
$$

(4) $y=\sqrt{x+9} \quad x \in[0,7] \quad \Rightarrow D_{f}=[0,7]$

Put $\boldsymbol{x}=\boldsymbol{0}$ in the function we get $\boldsymbol{y}=3$
Put $\boldsymbol{x}=7$ in the function we get $\boldsymbol{y}=\boldsymbol{4}$ then $R_{f}=[3,4]$
(5) $f(x)=\frac{1}{\sqrt{2-x}}+5$
(6) $y=\frac{3 x}{x^{2}-5 x+6}$

MATH 101

Chapter One - Functions

University of Basrah College of Education for Pure Sciences Department of Mathematics

Algebraic Combination of Function

If \boldsymbol{f} and \boldsymbol{g} are two functions with domains D_{f} and D_{g} respectively, then
(1) $(\boldsymbol{f}+\boldsymbol{g})(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})+\boldsymbol{g}(\boldsymbol{x})$ with $D_{f+g}=D_{f} \cap D_{g}$
(2) $(f-g)(x)=f(x)-g(x)$ with $D_{f-g}=D_{f} \cap D_{g}$
(3) (f.g) $(x)=f(x) \cdot g(x) \quad$ with $D_{f . g}=D_{f} \cap D_{g}$
(4) $\quad\left(\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, \quad g(x) \neq 0\right.$ with $\quad D_{f / g}=D_{f} \cap D_{g}$ and $g(x) \neq 0$

Examples: 1) If $f(x)=x^{2}-5 x-6$ and $g(x)=3 x^{2}+4$ then find $(f+g)(x)$, $(f-g)(x),(g-f)(x),(f \cdot g)(x),(f / g)(x)$ and $(g / f)(x)$. Moreover, find their domains.

Solution: $D_{f}=\mathbb{R}, D_{g}=\mathbb{R}$

Function	Formula	Domain
$f+g$	$(f+g)(x)=4 x^{2}-5 x-2$	\mathbb{R}
$f-g$	$(f-g)(x)=-2 x^{2}-5 x-10$	\mathbb{R}
$g-f$	$(g-f)(x)=2 x^{2}+5 x+10$	\mathbb{R}
$f \cdot g$	$(f \cdot g)(x)=3 x^{4}-15 x^{3}-14 x^{2}-20 x$	\mathbb{R}
f / g	-24	\mathbb{R}
g / f	$\left(\frac{f}{g}\right)(x)=\frac{x^{2}-5 x-6}{3 x^{2}+4}$	

2) If $f(x)=\sqrt{x}$ and $g x)=\sqrt{1-x}$ then find $(f+g)(x),(f-g)(x),(g-f)(x)$, $(f . g)(x),(f / g)(x)$ and $(g / f)(x)$. Moreover, find their domains.

Solution: $D_{f}=\{x \in \mathbb{R}: x \geq 0\}=\mathbb{R}^{+} \cup\{0\}=[0, \infty), D_{g}=\{x \in \mathbb{R}: x \leq 1\}=(-\infty, 1]$

Function	Formula	Domain
$f+g$	$(f+g)(x)=\sqrt{x}+\sqrt{1-x}$	$[0,1]$
$f-g$	$(f-g)(x)=\sqrt{x}-\sqrt{1-x}$	$[0,1]$
$g-f$	$(g-f)(x)=\sqrt{1-x}-\sqrt{x}$	$[0,1]$
$f . g$	$(f \cdot g)(x)=\sqrt{x(1-x)}$	$[0,1]$
f / g	$\left(\frac{f}{g}\right)(x)=\frac{\sqrt{x}}{\sqrt{1-x}}=\sqrt{\frac{x}{1-x}}$	$[0,1)$
g / f	$\left(\frac{g}{f}\right)(x)=\frac{\sqrt{1-x}}{\sqrt{x}}=\sqrt{\frac{1-x}{x}}$	$(0,1]$

3) If $f(x)=2$ and $g x)=x^{2}$ then find $(f+g)(x),(f-g)(x),(g-f)(x)$, $(f . g)(x),(f / g)(x)$ and $(g / f)(x)$. Moreover, find their domains and ranges.

Solution: $D_{f}=\mathbb{R}, \quad D_{g}=\mathbb{R}$

Function	Formula	Domain	Rang
$f+g$	$(f+g)(x)=2+x^{2}$	\mathbb{R}	$[2, \infty)$
$f-g$	$(f-g)(x)=2-x^{2}$	\mathbb{R}	$(-\infty, 2)$
$g-f$	$(g-f)(x)=x^{2}-2$	\mathbb{R}	$[-2, \infty)$
$f . g$	$(f . g)(x)=2 x^{2}$	\mathbb{R}	$[0, \infty)$
f / g	$\left(\frac{f}{g}\right)(x)=\frac{2}{x^{2}}$	$(-\infty, 0) \cup(0, \infty)$	$(0, \infty)$
g / f	$\left(\frac{g}{f}\right)(x)=\frac{x^{2}}{2}$	\mathbb{R}	$(0, \infty)$

Composite Function

If the range of the function $g(x)$ is contained in the domain of the function $f(x)$, then the composition $f \circ g$ is the function defined by $(f \circ g)(x)=f(g(x))$.
The domain of $f \circ g$ consists of the number x in the domain of g for which $g(x)$ lies in the domain of f.

$$
x \xrightarrow{g} g(x) \xrightarrow{f} f(g(x))
$$

MATH 101

Chapter One - Functions

University of Basrah
College of Education for Pure Sciences Department of Mathematics

Examples:

1) If $f(x)=\sqrt{x}$ and $g(x)=x+1$, then find
(a) $(f \circ g)(x)$
(b) $(g \circ f)(x)$
(c) $(f \circ f)(x)$
(d) $(g \circ g)(x)$

Solution: $D_{f}=[0, \infty), \quad D_{g}=\mathbb{R}$

Composite	Domain
$(\mathrm{a})(f \circ g)(x)=f(g(x))=\sqrt{g(x)}=\sqrt{x+1}$	$[-\mathbf{1}, \infty)$
(b) $(g \circ f)(x)=g(f(x))=f(x)+1=\sqrt{x}+1$	$[\mathbf{0}, \infty)$
(c) $(f \circ f)(x)=f(f(x))=\sqrt{f(x)}=\sqrt{\sqrt{x}}=x^{\frac{1}{4}}$	$[\mathbf{0}, \infty)$
(d) $(g \circ g)(x)=g(g(x))=g(x)+1=(x+1)+1=x+2$	\mathbb{R}

2) If $f(x)=x^{2}-3$ and $g(x)=x+1$, then find
(a) $(f \circ g)(x)$
(b) $(g \circ f)(x)$
(c) $(f \circ f)(x)$
(d) $(g \circ g)(x)$

Solution: $D_{f}=\mathbb{R}, \quad D_{g}=\mathbb{R}$

Composite	Domain
(a) $(f \circ g)(x)=f(g(x))=(g(x))^{2}-3=x^{2}+2 x-2$	\mathbb{R}
(b) $(g \circ f)(x)=g(f(x))=f(x)+1=x^{2}-2$	\mathbb{R}
(c) $(f \circ f)(x)=f(f(x))=(f(x))^{2}-3=\left(x^{2}-3\right)^{2}-3=x^{4}-6 x^{2}+6$	\mathbb{R}
(d) $(g \circ g)(x)=g(g(x))=g(x)+1=(x+1)+1=x+2$	\mathbb{R}

The Inverse of the functions:

Definition : A function is said to be one - to - one function if and only if there is no two elements of the domain have the same image in the range.
i.e. if $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2} \quad$ or if $x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$

MATH 101
Chapter One - Functions

University of Basrah College of Education for Pure Sciences

Department of Mathematics

Horizontal Line Test: A function is one-to-one if and only if there is no horizontal line can intersect its graph more than once.

Definition: Let f be a one-to-one function with domain A and range B (bijective function), then its inverse function f^{-1} has domain B and range A and is defined by $f^{-1}(y)=x \Leftrightarrow f(x)=y, \forall y \in B$ or $f^{-1}(f(x))=f\left(f^{-1}(x)\right)=x$ and $D_{f^{-1}}=R_{f}$, $D_{f}=R_{f^{-1}}$.

How to find the inverse function of a one-to-one function \boldsymbol{f}

Step 1: Write $y=f(x)$.
Step 2: Solve this equation for x in terms of y (if possible).
Step 3: To express f^{-1} as a function of x, interchange x and y. The resulting equation is $y=f^{-1}(x)$.

Example: Find the inverse of f for $f(x)=x^{3}+2$
Solution: According to the above algorithm, we first write $y=x^{3}+2$, then we solve this equation for x :
$x^{3}=y-2 \Rightarrow x=\sqrt[3]{y-2}$
Finally, we iterchange x and y :

$y=\sqrt[3]{x-2}$
$\therefore f^{-1}(x)=\sqrt[3]{x-2}$

* The graph of f^{-1} is obtained by reflecting the graph of f around the line $y=x$.

Chapter One - Functions

Graph of Functions:

Definition: Let $f(x)$ be a function with domain D_{f}. The set of all points (x, y) in the plane with x in D_{f} and $y=f(x)$ is called the graph of $f(x)$.
$\left\{(x, f(x)): x \in D_{f}\right\}$

x	1	2	\ldots	n
$f(x)$	$f(1)$	$f(2)$	\ldots	$f(n)$
$(x, f(x))$	$(1, f(1))$	$(2, f(2))$	\ldots	$(n, f(n))$

Shifting a Graph of a function:

1. Vertical Shifts:

$y=f(x)+k \Rightarrow$ Shifts the graph of $f\left\{\begin{array}{l}\text { up } \boldsymbol{k} \text { units if } k>0 \\ \text { down }|\boldsymbol{k}| \text { units if } k<0\end{array}\right.$

2. Horizontal Shifts:

$y=f(x+h) \Rightarrow$ Shifts the graph of $f\left\{\begin{array}{l}\text { left } \boldsymbol{h} \text { units if } h>0 \\ \text { right }|\boldsymbol{h}| \text { units if } h<0\end{array}\right.$

Scaling and Reflecting a Graph of a Function:

For $c>1$, the graph is scaled as:

$y=c f(x)$ Stretches the graph of f vertically by a factor of c.
$y=\frac{1}{c} f(x)$ Compresses the graph of f vertically by a factor of c.
$y=f(c x)$ Compresses the graph of f horizontally by a factor of c.
$y=f\left(\frac{1}{c} x\right)$ Stretches the graph of f horizontally by a factor of c.
For $c=-1$, the graph is reflected as:
$y=-f(x) \quad$ Reflects the graph f across the x-axis
$y=f(-x) \quad$ Reflects the graph f across the y-axis

Example: Consider the function $y=\sqrt{x}$

Some Specific Types of Functions

Algebraic Functions:

1. Real valued function:

The function $f: X \rightarrow Y$ is called a real valued function if $X \subseteq \mathbb{R}$ and $Y \subseteq \mathbb{R}$.

2. Constant function:

The function $f: \mathbb{R} \rightarrow \mathbb{R}$, which is defined by $y=f(x)=c, \forall x \in \mathbb{R}$, where c is constant in \mathbb{R}, is called a constant function. $D_{f}=\mathbb{R}$ and $R_{f}=\{c\}$.
Example: Consider the function $y=f(x)=2$

\boldsymbol{x}	-2	-1	0	1	2
$\boldsymbol{f}(\boldsymbol{x})$	2	2	2	2	2
$(\boldsymbol{x}, \boldsymbol{f}(\boldsymbol{x}))$	$(-2,2)$	$(-1,2)$	$(0,2)$	$(1,2)$	$(2,2)$

3. Identity function:

The function $f: \mathbb{R} \rightarrow \mathbb{R}$, which is defined by $y=f(x)=x, \forall x \in \mathbb{R}$, is called the identity function. $D_{f}=\mathbb{R}$ and $R_{f}=\mathbb{R}$.

\boldsymbol{x}	-2	-1	0	1	2
$\boldsymbol{f}(\boldsymbol{x})$	-2	-1	0	1	2
$(\boldsymbol{x}, \boldsymbol{f}(\boldsymbol{x}))$	$(-2,-2)$	$(-1,-1)$	$(0,0)$	$(1,1)$	$(2,2)$

4. Power function:

The function $f: X \rightarrow Y$, which is defined by $y=f(x)=x^{a}, \forall x \in X$, is called the power function.
a) If $a=n \in \mathbb{N}$: graph for $a=1,2,3,4,5$
$a=1 \rightarrow f(x)=x$ (Identity function)
$a=2 \rightarrow f(x)=x^{2} \rightarrow D_{f}=\mathbb{R}$ and $R_{f}=[0, \infty)$.
$a=3 \rightarrow f(x)=x^{3} \rightarrow D_{f}=\mathbb{R}$ and $R_{f}=\mathbb{R}$.
$a=4 \rightarrow f(x)=x^{4} \rightarrow D_{f}=\mathbb{R}$ and $R_{f}=[0, \infty)$.
$a=5 \rightarrow f(x)=x^{5} \rightarrow D_{f}=\mathbb{R}$ and $R_{f}=\mathbb{R}$.

University of Basrah College of Education for Pure Sciences Department of Mathematics
b) If $a=-n \in \mathbb{N}$: graph for $a=-1,-2$

$$
\begin{aligned}
& a=-1 \rightarrow f(x)=x^{-1} \rightarrow f(x)=\frac{1}{x} \rightarrow D_{f}=\mathbb{R} /\{0\} \text { and } R_{f}=\mathbb{R} /\{0\} \\
& a=-2 \rightarrow f(x)=x^{-2} \rightarrow f(x)=\frac{1}{x^{2}} \rightarrow D_{f}=\mathbb{R} /\{0\} \text { and } R_{f}=(0, \infty)
\end{aligned}
$$

c) If $a \in \mathbb{Q}$: graph for $a=\frac{1}{2}, \frac{1}{3}, \frac{3}{2}, \frac{2}{3}$

$$
\begin{aligned}
& a=\frac{1}{2} \rightarrow f(x)=x^{\frac{1}{2}}=\sqrt{x} \rightarrow D_{f}=[0, \infty) \text { and } R_{f}=[0, \infty) \\
& a=\frac{1}{3} \rightarrow f(x)=x^{\frac{1}{3}}=\sqrt[3]{x} \rightarrow D_{f}=\mathbb{R} \text { and } R_{f}=\mathbb{R} \\
& a=\frac{3}{2} \rightarrow f(x)=x^{\frac{3}{2}}=\sqrt{x^{3}} \rightarrow D_{f}=[0, \infty) \text { and } R_{f}=[0, \infty) \\
& a=\frac{2}{3} \rightarrow f(x)=x^{\frac{2}{3}}=\sqrt[3]{x^{2}} \rightarrow D_{f}=\mathbb{R} \text { and } R_{f}=[0, \infty)
\end{aligned}
$$

5. Polynomial function:

A polynomial function is any function can be written in the form

$$
f(x)=P_{n}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}, n \in \mathbb{N}
$$ with the coefficients $a_{n}, a_{n-1}, \cdots, a_{2}, a_{1}, a_{0} \in \mathbb{R}$ and $D_{f}=\mathbb{R}$.

with $a_{n} \neq 0, n \geq 0,(n$ is the degree of polynomial)
if $n=0 \rightarrow f(x)=P_{0}(x)=a_{0}$ (constant function)
if $n=1 \rightarrow f(x)=P_{1}(x)=a_{1} x+a_{0}$ (linear function)
if $n \geq 2 \rightarrow f(x)=P_{n}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$ (nonlinear function)

Chapter One - Functions

6. Absolute value function:

The function $f: \mathbb{R} \rightarrow \mathbb{R}$, which is defined by
$y=f(x)= \begin{cases}x, & x \geq 0 \\ -x, & x<0\end{cases}$
is called the absolute value function (the modulus function).
$D_{f}=\mathbb{R}$ and $R_{f}=\mathbb{R}^{+} \cup\{0\}=[0, \infty)$.

7. Sign function

The function $f: \mathbb{R} \rightarrow \mathbb{R}$, which is defined by

$$
f(x)=\operatorname{sgn}(x)=\left\{\begin{array}{l}
\frac{|x|}{x}, x \neq 0 \\
0, x=0
\end{array}= \begin{cases}1 & \text { if } x>0 \\
0 & \text { if } x=0 \\
-1 & \text { if } x<0\end{cases}\right.
$$

is called the sign function.
$D_{f}=\mathbb{R}$ and $R_{f}=\{-1,0,1\}$

8. The Greatest integer function)

The function $f: \mathbb{R} \rightarrow \mathbb{R}$, which defined by
$f(x)=\lfloor x\rfloor=\left\{\begin{array}{cl}-2 & \text { if }-2 \leq x<-1 \\ -1 & \text { if }-1 \leq x<0 \\ 0 & \text { if } 0 \leq x<1 \\ 1 & \text { if } 1 \leq x<2 \\ 2 & \text { if } 2 \leq x<3 \\ & \vdots\end{array}\right.$
is called the greatest integer function.

$$
D_{f}=\mathbb{R} \text { and } R_{f}=\mathbb{Z}
$$

Y-axis $0.5-1$

Chapter One - Functions

9. The piecewise function

A piecewise function is a function that is described by using different formulas on different part of its domain.

Example: Find the domain and the range and sketch the graph of the function

$$
f(x)=\left\{\begin{array}{l}
-x \text { if } x<0 \\
x^{2} \text { if } 0 \leq x \leq 1 \\
1 \text { if } x>1
\end{array}\right.
$$

Solution: $D_{f}=\mathbb{R}$ and $R_{f}=\mathbb{R}^{+} \cup\{0\}=[0, \infty)$.

10. Odd function: The function $f: X \rightarrow Y$ is an odd function if $f(-x)=-f(x)$.
11. Even function: The function $f: X \rightarrow Y$ is an even function if $f(-x)=f(x)$.
12. Rational function: A rational function is a quotient or ratio $f(x)=\frac{p(x)}{q(x)}$, where p and q are polynomials. The domain of a rational function is the set of all real x for which $q(x) \neq 0$. The graphs of several rational functions are sbown here below.

Chapter One - Functions

University of Basrah College of Education for Pure Sciences Department of Mathematics

Transcendental Functions:

1. Trigonometric Functions:

Definition: A function $f(x)$ is a periodic function if there is a positive number p such that $f(x+p)=f(x)$ for every value of x. The positive number p is called the period of the function f.

$$
\left.\begin{array}{l}
\sin (x+2 \pi)=\sin (x), \cos (x+2 \pi)=\cos (x) \\
\sec (x+2 \pi)=\sec (x), \csc (x+2 \pi)=\csc (x)
\end{array}\right\} \text { period } 2 \pi .
$$

Domain: $-\infty<x<\infty$
Range: $-1 \leq y \leq 1$
Period: 2π

Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \ldots$
Range: $-\infty<y<\infty$
Period: π

Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \ldots$
Range: $\quad y \leq-1$ or $y \geq 1$
Period: 2π

Domain: $-\infty<x<\infty$
Range: $-1 \leq y \leq 1$
Period: 2π

Domain: $x \neq 0, \pm \pi, \pm 2 \pi, \ldots$
Range: $-\infty<y<\infty$
Period: π

Domain: $x \neq 0, \pm \pi, \pm 2 \pi, \ldots$
Range: $y \leq-1$ or $y \geq 1$
Period: 2π

Some Important Identities of The Trigonometric Functions

$$
\begin{aligned}
& \tan x=\frac{\sin x}{\cos x} \\
& \cot x=\frac{\cos x}{\sin x} \\
& \sec x=\frac{1}{\cos x} \\
& \csc x=\frac{1}{\sin x} \\
& \sin ^{2} x+\cos ^{2} x=1 \\
& \sin 2 x=2 \sin x \cos x \\
& \cos 2 x=\cos x \cos x-\sin x \sin x=\cos ^{2} x-\sin ^{2} x=2 \cos ^{2} x-1=1-2 \sin ^{2} x \\
& \tan 2 x=\frac{2 \tan x}{1-\tan x} \\
& \sin (x \pm y)=\sin x \cos y \pm \cos x \sin y \\
& \cos (x \pm y)=\cos x \cos y \mp \sin x \sin y \\
& \tan (x \pm y)=\frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}
\end{aligned}
$$

Definition by Power series

$$
\begin{aligned}
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}
\end{aligned}
$$

Remark: One can define tangent, cotangent, secant and cosecant using identities above.

MATH 101

Chapter One - Functions

Inverse of Trigonometric Functions

The six basic trigonometric functions are not one-to-one (their values repeat periodically). However, we can restrict their domains to intervals on which they are one-to-one. The sine function increases from -1 at $x=-\pi / 2$ to +1 at $x=\pi / 2$. By restricting its domain to the interval $[-\pi / 2, \pi / 2]$, we make it one-to-one, so that it has an inverse $\sin ^{-1} x$. Similar domain restrictions can be applied to all six trigonometric functions.

Domain restrictions that make the trigonometric functions one-to-one

$y=\sin x$
Domain: $[-\pi / 2, \pi / 2]$
Range: $[-1,1]$

$y=\cot x$
Domain: $(0, \pi)$
Range: $(-\infty, \infty)$

$y=\cos x$
Domain: $[0, \pi]$
Range: $[-1,1]$

$y=\sec x$
Domain: $[0, \pi / 2) \cup(\pi / 2, \pi]$
Range: $(-\infty,-1] \cup[1, \infty)$

$y=\tan x$
Domain: $(-\pi / 2, \pi / 2)$
Range: $(-\infty, \infty)$

$y=\csc x$
Domain: $[-\pi / 2,0) \cup(0, \pi / 2]$
Range: $(-\infty,-1] \cup[1, \infty)$

```
Domain: \(-1 \leq x \leq 1\)
```

Range: $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$

(a)

Domain: $-1 \leq x \leq 1$
Range: $\quad 0 \leq y \leq \pi$

(b)

Domain: $-\infty<x<\infty$ Range: $-\frac{\pi}{2}<y<\frac{\pi}{2}$

(c)

Domain: $x \leq-1$ or $x \geq 1$
Range: $\quad 0 \leq y \leq \pi, y \neq \frac{\pi}{2}$

(d)

Domain: $\quad x \leq-1$ or $x \geq 1$
Range: $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}, y \neq 0$

(e)

Domain: $-\infty<x<\infty$
Range: $0<y<\pi$

(f)

Graphs of the six basic inverse trigonometric functions.

2. Exponential Functions:

The function of the form $f(x)=a^{x}$ where $a>0$ and $a \neq 1$, is called an exponential function. The domain of the exponential function is \mathbb{R}.

(a) $y=a^{x}, 0<a<1$

(b) $y=1^{x}$

(c) $y=a^{x}, a>1$

Department of Mathematics - College of Education for Pure Sciences - University of Basrah Telegram: @uobmath
t.me\uobmath

Chapter One - Functions

Examples:

1) $y=f(x)=2^{x} \rightarrow D_{f}=\mathbb{R}, R_{f}=(0, \infty)$

x	$f(x)=2^{x}$
-2	$f(-2)=2^{-2}=\frac{1}{2^{2}}=\frac{1}{4}$
-1	$f(-1)=2^{-1}=\frac{1}{2^{1}}=\frac{1}{2}$
0	$f(0)=2^{0}=1$
1	$f(1)=2^{1}=2$
2	$f(2)=2^{2}=4$

2) $y=f(x)=\left(\frac{1}{2}\right)^{x} \rightarrow D_{f}=\mathbb{R}, R_{f}=(0, \infty)$

x	$f(x)=\left(\frac{1}{2}\right)^{x}$
-2	$f(-2)=\left(\frac{1}{2}\right)^{-2}=\frac{1^{-2}}{2^{-2}}=\frac{2^{2}}{1^{2}}=4$
-1	$f(-1)=\left(\frac{1}{2}\right)^{-1}=\frac{1^{-1}}{2^{-1}}=\frac{2^{1}}{1^{1}}=2$
0	$f(0)=\left(\frac{1}{2}\right)^{0}=1$
1	$f(1)=\left(\frac{1}{2}\right)^{1}=\frac{1^{1}}{2^{1}}=\frac{1}{2}$
2	$f(2)=\left(\frac{1}{2}\right)^{2}=\frac{1^{2}}{2^{2}}=\frac{1}{4}$

Chapter One - Functions

3. Logarithmic Functions:

The function of the form $f(x)=\log _{a}(x)$ where $a>0$ and $a \neq 1$, called logarithmic function. The domain of logarithmic function is \mathbb{R}^{+}.
$y=\log _{a}(x) \Leftrightarrow a^{y}=x$

Lows of logarithms:

If x and y are real numbers, then

1. $\log _{a}(x . y)=\log _{a}(x)+\log _{a}(y)$
2. $\log _{a}(x / y)=\log _{a}(x)-\log _{a}(y)$
3. $\log _{a}\left(x^{r}\right)=r \cdot \log _{a}(x) \quad($ where $r \in \mathbb{R})$

The Natural Logarithmic Function:

The function of the form $f(x)=\log _{e}(x)=\ln (x), x>0$ called the natural logarithmic function. $D_{f}=\mathbb{R}^{+}, R_{f}=\mathbb{R}$.

MATH 101

Chapter One - Functions

University of Basrah College of Education for Pure Sciences Department of Mathematics

Exercises 2

In exercises (1-20), find the domain and range of each the following where $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$

1. $y=5 x+3$
2. $y=2 x^{2}+1$
3. $y=-7 x-4$
4. $y=7$
5. $y=4-x^{2}$
6. $y=\sqrt{5 x+10}$
7. $y=\sqrt{x^{2}-3 x}$
8. $y=1-\sqrt{x}$
9. $y=\sqrt{x+9}$
10. $y=\sqrt{3 x-4}$
11. $y=\sqrt{x^{2}-4}$
12. $y=\sqrt{4-x^{2}}$
13. $y=\frac{1}{7-x}$
14. $y=\frac{6}{x+2}$
15. $y=\sqrt{\frac{1}{x-2}}$
16. $y=\frac{2}{\sqrt{2 x-5}}$
17. $y=\frac{x}{\sqrt{x+1}}$
18. $y=\frac{1}{1-\frac{1}{x-2}}$
19. $y=2+\frac{x^{2}}{x^{2}+4}$
20. $y=\frac{2}{x^{2}-16}$

In exercises (21-35), find the domain and the range and sketch the graph of each the following function
21. $y=\sqrt{x-5}$
22. $y=|2 x+1|$
23. $y=\frac{3 x+|x|}{x}$
24. $y=\frac{|x|}{x^{2}}$
25. $y= \begin{cases}x & \text { if } x \leq 0 \\ x+1 & \text { if } x>0\end{cases}$
26. $y= \begin{cases}2 x+3 & \text { if } x<-1 \\ 3-x & \text { if } x \geq-1\end{cases}$
27. $y=\left\{\begin{array}{cl}x+2 & \text { if } x \leq-1 \\ x^{2} & \text { if } x>-1\end{array}\right.$
28. $\begin{cases}-1 & \text { if } x \leq-1 \\ 3 x+2 & \text { if }|x|<1 \\ 7-2 x & \text { if } x \geq 1\end{cases}$
29. $y= \begin{cases}\frac{1}{x} & \text { if } x<0 \\ x & \text { if } x \geq 0\end{cases}$
30. $y=\frac{1}{|x|}$
31. $y=\left|x^{2}-1\right|$
32. $y=[\sin (x)]$
33. $y=[\cos (x)]$
34. $y=\sqrt{|x|}$
35. $y=\frac{x^{2}}{|x|}$

In exercises 36 and 37 , write formulas for $f \circ g$ and $g \circ f$ and find the domain and the range of each
36. $f(x)=\sqrt{x+1}, g(x)=\frac{1}{x}$
37. $f(x)=x^{2}, g(x)=1-\sqrt{x}$
38. Let $f(x)=\frac{x}{x-2}$. Find a function $y=g(x)$ so that $(f \circ g)(x)=x$.
39. Let $f(x)=2 x^{3}-4$. Find a function $y=g(x)$ so that $(f \circ g)(x)=x+2$.

In exercises 40-54, graph each function, not by plotting points, but by applying appropriate transformation to the graph of the standard functions.
40. $y=-\sqrt{2 x+1}$
41. $y=\sqrt{1-\frac{x}{2}}$
42. $y=(x-1)^{3}+2$
43. $y=(1-x)^{3}+2$
44. $y=\frac{1}{2 x}-1$
45. $y=\frac{2}{x^{2}}+1$
46. $y=-\sqrt[3]{x^{2}}$
47. $y=(-2 x)^{2 / 3}$
48. $y=\left|x^{2}-2 x\right|$
49. $y=-\sqrt{|x|}$
50. $y=1+2 \cos (x)$
51. $y=|\sin (x)|$
52. $y=\frac{1}{4} \tan \left(x-\frac{\pi}{4}\right)$
53. $y= \begin{cases}-x & \text { if } x<0 \\ e^{x}-1 & \text { if } x \geq 0\end{cases}$
54. $y=3 \ln (x-2)$

In exercises 55-60, find \boldsymbol{f}^{-1} and it's range of each function
55. $f(x)=\sqrt{10-3 x}$
56. $f(x)=\frac{4 x-1}{2 x+3}$
57. $f(x)=e^{x^{3}}$
58. $f(x)=2 x^{3}+3$
59. $f(x)=\ln (x+3)$
60. $f(x)=\frac{1+e^{x}}{1-e^{x}}$

